Postgraduate Department of Mathematics

M.Sc. Mathematics

Programme Outcomes

PO1	Acquire a deep sense of Mathematical, Logical and Analytical thinking
PO2	Create a strong base in theoretical methodologies
PO3	Explore new areas in applications of Mathematics.
PO4	Generate research aptitude and culture that leads to new theories.
PO5	Ability to create mathematical models of real world situations and finding sustainable solutions.
PO6	Develop scientific temper and integrity that ensures possible contributions to the subject
PO7	Become intellectually competent and to become a human being committed to development of society

Programme Specific Outcomes

PSO1	Acquire real insight into Advanced Mathematics.
PSO2	Build up a strong foundation in classical areas like Analysis, Abstract Algebra, and Measure theory.
PSO3	Create interest and confidence to pursue higher studies in Mathematics.
PSO4	Inculcate research aptitude among students.
PSO5	Understand different areas of Applied Mathematics.
PSO6	Develop Mathematical models of real-world problems and their solutions.

Course Outcomes

Г

SEN	SEMESTER 1						
		Abstract Algebra	CO1	Analyze the structure of finitely generated abelian groups and factor groups.			
1	ME010101		CO2	Apply Group Theory to problems in Combinatorics and other areas.			
			CO3	Apply Sylow's theorems and isomorphism theorems.			
			CO4	Apply the concepts of rings and ideals in polynomial factorization.			
			CO1	Analyze the theory of Vector spaces			
		Linear Algebra	CO2	Understand the algebra of linear transformations and linear functionals.			
2	ME010102		CO3	Apply the properties of determinants			
			CO4	Apply elementary canonical forms, characteristic values and annihilating polynomials.			
		Basic Topology	CO1	Understand various types of topological spaces.			
3	3 ME010103		CO2	Analyze topological spaces using some basic concepts like neighborhoods, interiors, accumulation points and continuity.			
			CO3	Applying the concept of connectedness in various topological spaces			
			CO4	Understand the hierarchy of separation axioms.			
4	ME010104	Real Analysis	CO1	Analyze functions of bounded variation and rectifiable curves.			
		iten / indiyolo	CO2	Evaluate Riemann - Stieltjes integrability of			

				functions
			002	Evaluate uniform convergence of Sequence and
			CO3	Series of Functions
			CO4	Analyze some special functions of real variables
			CO1	Understand basic concepts and properties of graphs.
			CO2	Apply the concept of Connectivity and theorems on
				Trees to solve everyday life problems.
5	ME010105	Graph Theory	CO3	Analyze vertex coloring and face coloring.
			CO4	Analyze plane graphs and Dual of plane graphs.

SEMESTER 2

			CO1	Apply the concepts of extension fields to geometric constructions.			
	ME010201	Advanced Abstract	CO2	Apply the concept of division algorithm in integral domains.			
6	ME010201	Algebra	CO3	Apply field extension to polynomial factorization.			
			CO4	Analyze the structure of groups and fields using Galois theory.			
			CO1	Understand and apply the Urysohn Characterization of normality and Tietze Characterization of normality			
7	ME010202	Advanced Topology	CO2	Apply the various topological properties on product spaces.			
			CO3	Understand and apply embedding lemma, Tychonoff Embedding and The UrysohnMetrisation Theorem			
			CO4	Understanding the concept of Net , its convergence and familiarize the idea of Homotopy of paths.			
			CO1	Understand Symbols and Symbolic Operations in Python			
		Numerical	CO2	Apply the techniques of differentiation and			

8	ME010203	Analysis with		integration to solve problems
		Python	CO3	Create Program to verify the continuity of a function at a point, area between two curves and finding the length of a curve
			CO4	Apply Gauss Elimination Method, Doolittle's Decomposition Method to solve problems
			CO1	Understand Riemann Sphere and Stereographic projection
			CO2	Apply theorems on convergence of the power series
9	9 ME010204 Complex Analysis	-	CO3	Analyze problems related to analytic functions in regions, conformal mappings and linear transformations
			CO4	Apply the theory and techniques of complex integration
10	ME010205	Measure	CO1	Evaluate Lebesgue outer measure and Lebesgue measurability of sets
10	Theory and Integration	•	CO2	Analyze the concept of Lebesgue measurability of functions and Lebesgue Integrals
			CO3	Apply the concepts of Integration over General Measure Space
			CO4	Understand Product measure and related theorems

SEMESTER 3

11	ME010301	Advanced Complex Analysis	CO1 CO2 CO3 CO4	Analyze Harmonic Functions and its basic properties Understand and apply the Mean-Value Property, Poisson's Formula, Schwarz's theorem and the Reflection Principle Understand the Riemann Zeta Function and its properties. Understand the Riemann Mapping Theorem, Boundary behaviour and the Reflection Principle
12	ME010302	Partial	CO1	Apply methods of solution for differential equations.

		Differential		Apply methods of solution for linear and nonlinear
		Equations	CO2	partial differential equations.
			CO3	Analyze various types of partial differential equations.
			CO4	Analyze solutions of Laplace equations and apply Logarithmic potential to theory of functions.
			CO1	Understand integral transforms and with special focus on Fourier Transforms
		Multivariate Calculus and	CO2	Analyze differentiability of multivariate functions
13	13 ME010303	Integral Transforms	CO3	Apply the concepts of higher order derivatives and finding extrema of functions
			CO4	Understand differentiation in higher dimensions and differential forms
			CO1	Analyze Normed Spaces and their properties.
		Functional Analysis	CO2	Analyze Linear Operators, Bounded and Continuous Linear Operators and Linear Functionals
14	ME010304		CO3	Analyze Inner Product Space, Hilbert space and further properties.
			CO4	Understand Zorn's lemma, Hahn-Banach theorem, Hahn-Banach theorem for Complex Vector Spaces
			CO1	and Normed Spaces Apply different simplex methods to optimize linear programming problems
15	ME010305	Optimization Techniques	CO2	Evaluate cutting plane method and branch and bound method for optimizing general integer linear programming problems.
			CO3	Apply the concept of Networks in optimization.
			CO4	Apply algorithms to optimize non-linear
				programming problems.

SEN	SEIVIESIER 4						
		Spectral	CO1	Apply category theorem and Uniform Boundedness theorem			
			CO2	Analyze Open Mapping Theorem and Closed Graph Theorem			
16	ME010401	Theory	CO3	Understand compact Linear Operators on Normed spaces and their spectral properties			
			CO4	Understand Spectral Properties of Bounded Self adjoint linear operators			
	ME010402	Analytic Number Theory	CO1	Understand various arithmetic functions			
			CO2	Understand some elementary theorems on the distribution of prime numbers.			
17			CO3	Applying the concept of congruence by using the Euler-Fermat theorem, the Lagrange's theorem and the Chinese remainder theorem.			
			CO4	Analyze the relationship between primitive roots and quadratic residues.			

Elective Courses

SEMESTER 4						
			CO1	Apply the basics of Differential Geometry.		
1	ME800401	Differential Geometry	CO2	Analyze Gauss map, geodesics and parallel transport.		
			CO 2	Apply the theory of Weingarten map, curvature of		
			CO3	plane curves and surfaces, arc length and line		

				integrals
			CO4	Understanding the theory of differential geometry in
			001	higher dimensions.
2	ME800402	Algorithmic Graph Theory	CO1	Evaluate Algorithms and its complexity to develop a
				feel for the concept of an efficient algorithm.
			CO2	Apply basic properties of trees and their usefulness in
				algorithmic techniques.
			CO3	Evaluate concepts of Networks in max-flow min-cut
				algorithm
			CO4	Analyze matchings and factorizations of graphs.
			04	
3	ME800403	Combinatorics	CO1	Apply algebraic concepts to solve basic problems in
				real life using permutations and combinations
			CO2	Analyze Ramsey type problems and Ramsey
				numbers
			CO3	Apply the Generalized Principle of Inclusion and
				Exclusion to solve real life problems.
			CO4	Understand generating functions and recurrence
				relations.